


Thioether Synthesis

Copper-Catalyzed Oxidative Trifluoromethylthiolation of Aryl Boronic Acids with TMSCF₃ and Elemental Sulfur**

Chao Chen, Yan Xie, Lingling Chu, Ruo-Wen Wang, Xingang Zhang, and Feng-Ling Qing*

Fluorinated functional groups are key structural units found in various pharmaceuticals and agrochemicals.^[1] Approximately 30% of all agrochemicals and 20% of all pharmaceuticals on the market contain fluorine. Among these substituents, the trifluoromethylthio group (CF₃S-), especially as an aromatic substituent, plays an important role because of its strong electron-withdrawing effect and high lipophilicity. These characteristics are similar to those of trifluoromethyl (CF₃-) and trifluoromethoxy (CF₃O-) groups.^[2] Additionally, aryl trifluoromethyl thioethers (CF₃SAr) are also key intermediates in the preparation of trifluoromethyl sulfoxide and sulfone, which are important trifluoromethylation reagents.[3] Although impressive progress has been made in the trifluoromethylation of arenes in the past several years, [4-7] only a few methods are available for the synthesis of aryl trifluoromethyl thioethers.^[8,9] Generally, aryl trifluoromethyl thioethers are prepared either by a nucleophilic reaction of trifluoromethylthiolate with aryl halides,[8] or by a nucleophilic or radical reaction of aryl sulfides and disulfides with a trifluoromethylation reagent. [9] However, these methods are variously limited by a combination of high temperatures, expensive reagents, and low reactivity with electron-rich aromatic groups. Thus, the development of general, safe, and efficient methods to access aryl trifluoromethyl thioethers is highly desirable. Very recently, Buchwald reported a palladium-catalyzed trifluoromethylthiolation of aryl bromides with CF₃SAg.^[10] This breakthrough for the preparation of ArSCF₃ is highly efficient and compatible with a variety of functional groups. However, from the point view of cost-effectiveness and synthetic convenience, using readily available and inexpensive catalysts and fluorinated reagents, such as copper and (trifluoromethyl)trimethylsilane (the Ruppert–Prakash reagent, TMSCF₃), to access aryl trifluoromethyl thioethers would be an attractive alternative.

The present study was inspired by our own and Buchwald's recent investigations into the copper mediated oxidative trifluoromethylation of arylboronic acid with TMSCF₃, [11] as well as Karlin's observation of the formation of a stable copper disulfide complex from the reaction of elemental sulfur (S_8) with a Cu^I complex. [12] We hypothesized that a Cu^I disulfide complex generated in situ (Π ; Scheme 1) would

Scheme 1. Copper(I)-catalyzed formation of aryl trifluoromethyl thioether from aryl boronic acid, TMSCF_3 , and S_8 .

react with aryl boronic acid to give intermediate **III** (Path A), which would subsequently react with TMSCF₃, providing the key intermediate complex $L_nCu(CF_3)(ArS)$ (**V**). Finally, oxidation of complex **V** to $L_nCu^{III}(CF_3)(ArS)$, [13] followed by reductive elimination would lead to the expected aryl trifluoromethyl thioether. Alternatively, intermediate **IV** could be formed by the reaction of TMSCF₃ with complex **II** (Path B). The desired product might still be obtained from oxidation of key intermediate **VI**, generated from complex **IV**.

Herein, we report the first example of the coppercatalyzed oxidative trifluoromethylthiolation of arylboronic acids with TMSCF₃ and elemental sulfur at room temperature. The notable features of this reaction are its high efficiency, excellent functional group compatibility (bromide is also compatible), operational simplicity, inexpensive catalyst, easily accessible starting materials, and mild reaction conditions.

In accordance with our hypothesis, we began this study by reacting phenyl boronic acid 1, TMSCF₃, and S_8 in the presence of different copper salts, bases, and oxidants to optimize the reaction conditions. To our delight, when the

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 (China)

E-mail: flq@mail.sioc.ac.cn

Prof. Dr. F.-L. Qing

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University

2999 North Renmin Lu, Shanghai, 201620 (China)

[**] This work was supported by the National Natural Science Foundation of China (21072028, 20832008) and the National Basic Research Program of China (2012CB21600). The authors thank Prof. Qilong Shen of the Shanghai Institute of Organic Chemistry for helpful discussions.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201108663.

^[*] C. Chen, Y. Xie, L. Chu, Dr. R.-W. Wang, Prof. Dr. X. Zhang, Prof. Dr. F.-L. Qing

reaction was conducted with CuI (1.0 equiv) and 1,10phenanthroline (phen; 1.1 equiv) in the presence of Ag₂CO₃ (2.0 equiv) as oxidant, along with K₃PO₄ (1.0 equiv) and KF (1.0 equiv) as bases, and 4 Å molecular sieves (4 Å M.S.), in DMF at room temperature, phenyl trifluoromethyl thioether 2a was formed in 33 % yield (Table 1, entry 1). The undesired

Table 1: Optimization of the copper-catalyzed oxidative trifluoromethylthiolation of phenyl boronic acid.[a]

Entry	CuX	Base	Oxidant	Yield [%] ^[b]
1 ^[c]	Cul	K₃PO₄/KF	Ag ₂ CO ₃	33
$2^{[c,d]}$	Cul	K_3PO_4/KF	Ag_2CO_3	0
3 ^[c]	_	K_3PO_4/KF	Ag_2CO_3	0
4 ^[c]	Cul	K_3PO_4/KF	_	0
5	Cul	KF	Ag_2CO_3	23
6	Cul	K_3PO_4	Ag_2CO_3	43
7	CuCl	K_3PO_4	Ag_2CO_3	19
8	CuBr	K_3PO_4	Ag_2CO_3	19
9	CuOAc	K_3PO_4	Ag_2CO_3	21
10	$(CuOTf)_2C_6H_6$	K_3PO_4	Ag_2CO_3	18
11	$K_4[Cu_2(CN)_6]$	K_3PO_4	Ag_2CO_3	9
12	CuCN	K_3PO_4	Ag_2CO_3	61
13	CuSCN	K_3PO_4	Ag_2CO_3	72
14 ^[e]	CuSCN	K_3PO_4	Ag_2CO_3	85
15 ^[e,f]	CuSCN	K_3PO_4	Ag_2CO_3	78
16 ^[e,g]	CuSCN	K_3PO_4	Ag_2CO_3	95

[a] Reaction conditions: 1 (0.2 mmol), S₈ (0.6 mmol), TMSCF₃ (0.6 mmol), CuX (0.2 mmol). phen (0.22 mmol), base (0.4 mmol), oxidant (0.4 mmol), 4 Å M.S. (50 mg), DMF (4 mL), 24 h, N₂, RT. [b] Determined by ¹⁹F NMR. [c]1.0 equiv of K₃PO₄ and 1.0 equiv of KF. [d] Without phen. [e] With 5.0 equiv of TMSCF₃ and 3.0 equiv of K₃PO₄. [f] With 10 mol% of CuSCN and 10 mol% phen. [g] With 10 mol% of CuSCN and 20 mol% phen.

products phenyl disulfide (3) and cyclic trimeric phenyl boronic acid anhydride (4) were observed in the reaction mixture. Furthermore, reactions without CuI, phen, or Ag₂CO₃ failed to afford desired product 2a, thus showing the pivotal role of these reagents in the reaction (entries 2–4). Interestingly, when K₃PO₄ was used as both base and initiator for TMSCF₃, the yield increased to 43% (entry 6). The formation of 4 indicated that the intermediate III might be generated slowly. Likewise, the formation of 3 arose from the homocoupling of copper complex III; an indication that the reaction of III with TMSCF3 to form V was even slower. Therefore, if a suitable copper salt was used to accelerate step 1 (the formation of copper complexes III from intermediate II) and step 2 (formation of V from III), and a proper oxidant was employed to facilitate the reductive elimination of V (Scheme 1), the formation of byproducts 3 and 4 would be inhibited and thus lead to improved yield of desired product 2a. Accordingly, different copper salts and oxidants were examined to improve the reaction efficiency. After many attempts, CuSCN and Ag₂CO₃ were found to be the best choices, providing 2a in 72 % yield along with a small amount of phenyl disulfide 3 (Table 1, entry 13). To further inhibit the formation of 3, 5.0 equivalents of TMSCF₃ was used, further improving the yield to 85% (Table 1, entry 14). Notably, a catalytic amount of CuSCN (10 mol%) and phen (10 mol %) still furnished 2a in a comparable yield (78%). Further increasing the loading of phen to 20 mol % provided the optimum yield of 2a, 95% (entry 16).

With the optimum reaction conditions (Table 1, entry 16) determined, the substrate scope of the reaction was then investigated (Scheme 2). The mild reaction conditions

$$Ar - B(OH)_2 + S_8 + Me_3SiCF_3 \xrightarrow{\text{CuSCN (10mol\%)} \\ \text{1b-p}} \xrightarrow{\text{K}_3PO_4, Ag_2CO_3, DMF} \xrightarrow{\text{2b-p}} \\ Ar - SCF_3 & Ph \longrightarrow SCF_3 & PhO \longrightarrow SCF_3 \\ 2b,82\% & 2c,64\% & 2d,91\% \\ BnO \longrightarrow SCF_3 & 2f,84\% & 2g,84\% \\ 2e,86\% & 2f,84\% & 2g,84\% \\ \hline O \longrightarrow SCF_3 & 2i,78\% & 2j,67\% \\ \hline NC \longrightarrow SCF_3 & Ph \longrightarrow SCF_3 & SCF_3 \\ 2k,70\% & 2l,89\% & 2m,71\% \\ \hline O \longrightarrow SCF_3 & Ph \longrightarrow SCF_3 \\ \hline O \longrightarrow SCF_3 & O \longrightarrow SCF_3 \\ \hline$$

Scheme 2. Scope of the Copper(I)-catalyzed oxidative trifluoromethylthiolation of aryl boronic acids. Reaction conditions: 1 (0.2 mmol), S₈ (0.6 mmol), TMSCF₃ (1.0 mmol), CuSCN (0.02 mmol), Phen (0.04 mmol), K₃PO₄ (0.6 mmol), Ag₂CO₃ (0.4 mmol), 4 Å M.S. (50 mg), DMF (3 mL), 24 h, N₂, RT. Yields shown are of isolated products.

20,58%

allowed for the trifluoromethylthiolation of aryl boronic acids containing a range of functional groups, including ester, unprotected amide, ketone, nitrile, and sulfonyl groups. Notably, even for the substrates bearing bromide or vinyl group, which are reactive in the presence of a Pd⁰ catalyst, good yields were still obtained, thus providing opportunities for further transformation.

To investigate the mechanism of the oxidative trifluoromethylthiolation, several experiments were performed. First, the reaction of 3,4,5-trimethoxyphenyl boronic acid (1h) with S_8 , CuSCN, and phen in the presence of K_3PO_4 in $[D_7]DMF$ at room temperature was monitored by ¹H NMR spectroscopy (see the Supporting Information). A new species corresponding to intermediate III was observed. GC/MS analysis of the

2543

reaction mixture showed a peak at m/z = 199, which was assigned to Ph(OMe)₃S⁻, suggesting that the formation of intermediate **III** from boronic acid **1**, S₈, and Cu¹ is a reasonable proposal. In contrast, neither CF₃S-Cu nor CF₃-Cu was observed when a mixture of TMSCF₃, CuSCN, phen, S₈, and K₃PO₄ in DMF was stirred at room temperature (see the Supporting Information). Furthermore, the reaction of copper 4-methoxyphenyl thiolate^[14] with TMSCF₃ in the presence of Ag₂CO₃ and K₃PO₄ at room temperature proceeded smoothly to give **2q** as the only fluorinated product in 59% yield (determined by ¹⁹F NMR; Eq. (1) of Scheme 3). However, only trace **2q** was detected in the

MeO SCu
$$\xrightarrow{1) \text{ phen, 4Å M.S., DMF}}$$
 MeO SCF₃ MeO SCF₃ (1)
$$Ag_2CO_{3.24} \text{ h}$$
 2q 59%

Scheme 3. Synthesis of trifluoromethyl 4-methoxyphenyl thioether.

reaction of copper trifluoromethyl thiolate (CuCF₃)^[15] with 4-methoxyphenyl boronic acid (Eq. (2) of Scheme 3). Based on these results, we propose that path A (Scheme 1) is the likely pathway for the copper-catalyzed oxidative trifluomethylthiolation of aryl boronic acids with TMSCF₃ and S_8 . [16]

In summary, we have developed the first copper(I)-catalyzed oxidative trifluoromethylthiolation of arylboronic acid using $TMSCF_3$ and S_8 at room temperature. This reaction provides an efficient and convenient method for the preparation of aryl trifluoromethyl thioethers. An organocopper disulfide complex was proposed as the key intermediate in the catalytic cycle.

Experimental Section

General procedure for oxidative trifluoromethylthiolation: In a glove box, 4 Å powdered molecular sieves (50 mg) and K₃PO₄ (128 mg, 0.6 mmol, 3.0 equiv) were added to a test tube equipped with a magnetic stir bar. The vessel was sealed with a septum and flamedried under vacuum. The tube was cooled to room temperature and backfilled with argon. Then CuSCN (3 mg, 0.02 mmol, 0.1 equiv), 1,10-phenanthroline (8 mg, 0.04 mmol, 0.2 equiv), S_8 (20 mg, 0.6 mmol, 3.0 equiv), aryl boronic acid 1 (0.2 mmol, 1.0 equiv), and Ag₂CO₃ (110 mg, 0.4 mmol, 2.0 equiv) were quickly added under a N₂ atmosphere. The tube was then evacuated and backfilled with argon gas. Freshly distilled DMF (5 mL) and TMSCF₃ (150 µL, 1.0 mmol, 5.0 equiv) were then added to the reaction tube by syringe, which was then placed under a balloon of N₂ and stirred vigorously for 24 h. Fluorobenzene (56 µL, 0.6 mmol) was added as an internal standard, and the yield of the crude reaction was measured by 19F NMR before workup. The reaction solution was filtered through Celite on silica and the filter cake was washed with diethyl ether. The filtrate was then washed with brine and concentrated. The residue was purified by silica gel column chromatography with hexane to provide pure aryl trifluoromethyl thioether.

Received: December 8, 2011 Published online: January 27, 2012

Keywords: aryl boronic acids · copper catalysis · oxidative coupling · sulfur · trifluoromethylthiolation

- a) T. Yamazaki, T. Taguchi, I. Ojima in Fluorine in Medicinal Chemistry and Chemical Biology (Ed.: I. Ojima), Wiley-Blackwell, Chichester, 2009; b) P. Jeschke, ChemBioChem 2004, 5, 570; c) K. Muller, C. Faeh, F. Diederich, Science 2007, 317, 1881; d) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320; e) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359; f) T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470.
- [2] a) S. Manteau, S. Pazenok, J. P. Vors, F. R. Leroux, J. Fluorine Chem. 2010, 131, 140; b) F. Leroux, P. Jeschke, M. Schlosser, Chem. Rev. 2005, 105, 827; c) C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165; d) A. Leo, C. Hansch, D. Elkins, Chem. Rev. 1971, 71, 525.
- [3] a) L. Xu, J. Cheng, M. L. Trudell, J. Org. Chem. 2003, 68, 5388;
 b) S.-Y. Tang, P. Zhong, Q.-L. Lin, J. Fluorine Chem. 2007, 128, 636;
 c) G. K. S. Prakash, J. Hu, G. A. Olah, Org. Lett. 2003, 5, 3253;
 d) Y. Zhao, J. Zhu, C. Ni, J. Hu, Synthesis 2010, 1899.
- [4] For conventional examples of arene trifluoromethylation reactions, see: a) C. Wakselman, M. Tordeux, J. Chem. Soc. Chem. Commun. 1987, 1701; b) B. R. Langlois, E. Laurent, M. Roidot, Tetrahedron Lett. 1991, 32, 7525; c) Y. Macé, B. Raymondeau, C. Pradet, J. C. Blazejewski, E. Magnier, Eur. J. Org. Chem. 2009, 1390; d) M. S. Wiehn, E. V. Vinogradova, A. Togni, J. Fluorine Chem. 2010, 131, 951; e) Y. Ji, T. Bruecki, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond, P. S. Baran, Proc. Natl. Acad. Sci. USA 2011, 108, 14411.
- [5] For recent examples of palladium-based arene trifluoromethylation reactions, see: a) V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2006, 128, 12644; b) N. D. Ball, J. W. Kampf, M. S. Sanford, J. Am. Chem. Soc. 2010, 132, 2878; c) Y. Ye, N. D. Ball, J. W. Kampf, M. S. Sanford, J. Am. Chem. Soc. 2010, 132, 14682; d) E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson, S. L. Buchwald, Science 2010, 328, 1679; e) X. Wang, L. Truesdale, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 3648; f) B. S. Samant, G. W. Kabalka, Chem. Commun. 2011, 47, 7236; g) N. D. Ball, J. B. Gary, Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 7577; h) X. Mu, S. Chen, X. Zhen, G. Liu, Chem. Eur. J. 2011, 17, 6039; i) R. N. Loy, M. S. Sanford, Org. Lett. 2011, 13, 2548; j) E. J. Cho, S. L. Buchwald, Org. Lett. 2011, 13, 6552; k) Y. Zhao, J. Hu, Angew. Chem. 2012, 124, 1057; Angew. Chem. Int. Ed. 2012, 51, 1033.
- [6] For recent examples of copper-based arene trifluoromethylation reactions, see: a) G. G. Dubinina, H. Furutachi, D. A. Vicic, J. Am. Chem. Soc. 2008, 130, 8600; b) M. Oishi, H. Kondo, H. Amii, Chem. Commun. 2009, 1909; c) K. A. McReynolds, R. S. Lewis, L. K. G. Ackerman, G. G. Dubinina, W. W. Brennessel, D. A. Vicic, J. Fluorine Chem. 2010, 131, 1108; d) R. Shimizu, H. Egami, T. Nagi, J. Chae, Y. Hamashima, M. Sodeoka, Tetrahedron Lett. 2010, 51, 5947; e) C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu, J.-C. Xiao, Angew. Chem. 2011, 123, 1936; Angew. Chem. Int. Ed. 2011, 50, 1896; f) H. Morimoto, T. Tsubogo, N. D. Litvinas, J. F. Hartwig, Angew. Chem. 2011, 123, 3877; Angew. Chem. Int. Ed. 2011, 50, 3793; g) O. A. Tomashenko, E. C. Escudero-Adan, M. M. Belmonte, V. V. Grushin, Angew. Chem. 2011, 123, 7797; Angew. Chem. Int. Ed. 2011, 50, 7655; h) T. Knauber, F. Arikan, G.-V. Röschenthaler, L. J. Gooßen, Chem. Eur. J. 2011, 17, 2689; i) H. Kondo, M. Oishi, K. Fujikawa, H. Amii, Adv. Synth. Catal.

- 2011, 353, 1247; j) Y. Li, T. Chen, H. Wang, R. Zhang, K. Jin, X. Wang, C. Duan, Synlett 2011, 1713; k) I. Popov, S. Lindeman, O. Daugulis, J. Am. Chem. Soc. 2011, 133, 9286; l) J. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu, L. Liu, Chem. Commun. 2011, 47, 4300; m) T. Liu, Q. Shen, Org. Lett. 2011, 13, 2342; n) C. P. Zhang, J. Cai, C.-B. Zhou, X. P. Wang, X. Zheng, Y. C. Gu, J. C. Xiao, Chem. Commun. 2011, 47, 9516; o) H. Kawai, T. Furukawa, Y. Nomura, E. Tokunaga, N. Shibata, Org. Lett. 2011, 13, 3596; p) M. M. Kremlev, A. I. Mushta, W. Tyrra, Y. L. Yagupolskii, J. Fluorine Chem. 2012, 133, 67; q) N. D. Litvinas, P. S. Fier, J. F. Hartwig, Angew. Chem. 2012, 124, 551; Angew. Chem. Int. Ed. 2012, 51, 536; r) T. Liu, X. Shao, Y. Wu, Q. Shen, Angew. Chem. 2012, 124, 555; Angew. Chem. Int. Ed. 2012, 51,
- [7] For recent examples of silver-mediated arene trifluoromethylation and trifluoromethoxylation reactions, see: a) Z. Weng, R. Lee, W. Jia, Y. Yuan, W. Wang, X. Feng, K.-W. Huang, Organometallics 2011, 30, 3229; b) Y. Ye, S. H. Lee, M. S. Sanford, Org. Lett. 2011, 13, 5464; c) C. Huang, T. Liang, S. Harada, E. Lee, T. Ritter, J. Am. Chem. Soc. 2011, 133, 13308.
- [8] a) L. M. Yagupolskii, N. V. Kondratenko, V. P. Sabur, Synthesis 1975, 721; b) D. V. Remy, K. E. Rittle, C. A. Hunt, M. B. Freedman, J. Org. Chem. 1976, 41, 1644; c) Q. Y. Chen, J. X. Duan, J. Chem. Soc. Chem. Commun. 1993, 918; d) D. J. Adams, A. Goddard, J. H. Clark, D. J. Macquarrie, Chem. Commun. 2000, 987; e) D. J. Adams, J. H. Clark, J. Org. Chem. 2000, 65, 1456; f) W. Tyrra, D. Naumann, B. Hoge, Y. L. Yagupolskii, J. Fluorine Chem. 2003, 119, 101.
- [9] a) V. N. Boiko, G. M. Shchupak, L. M. Yagupolskii, J. Org. Chem. USSR. 1977, 13, 972; b) C. Wakselman, M. Tordeux, J. Org. Chem. 1985, 50, 4047; c) C. Wakselman, M. Tordeux, J.-L. Clavel, B. Langlois, J. Chem. Soc. Chem. Commun. 1991, 993; d) T. Umemoto, S. Ishihara, J. Am. Chem. Soc. 1993, 115, 2156; e) T. Billard, B. R. Langlois, Tetrahedron Lett. 1996, 37, 6865; f) B. Quiclet-Sire, R. N. Saicic, S. Z. Zars, Tetrahedron Lett. 1996, 37, 9057; g) T. Billard, N. Roques, B. R. Langlois, J. Org. Chem.

- 1999, 64, 3813; h) N. Roques, J. Fluorine Chem. 2001, 107, 311; i) G. Blond, T. Billard, B. R. Langlois, Tetrahedron Lett. 2001, 42, 2473; j) C. Pooput, M. Medebielle, W. R. Dolbier, Org. Lett. 2004, 6, 301; k) C. Pooput, W. R. Dolbier, M. Medebielle, J. Org. Chem. 2006, 71, 3564; l) I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. 2007, 119, 768; Angew. Chem. Int. Ed. 2007, 46, 754; m) A. Harsányi, E. Dorko, A. Csapo, T. Bako, C. Peltz, J. Rabai, J. Fluorine Chem. 2011, 132, 1241.
- [10] G. Teverovskiy, D. S. Surry, S. L. Buchwald, Angew. Chem. 2011, 123, 7450; Angew. Chem. Int. Ed. 2011, 50, 7312.
- [11] a) L. Chu, F. L. Qing, Org. Lett. 2010, 12, 5060; b) T. D. Senecal, A. T. Parsons, S. L. Buchwald, J. Org. Chem. 2011, 76, 1174.
- [12] M. E. Helton, P. Chen, P. P. Paul, Z. TyeKlar, R. D. Sommer, L. N. Zakharov, A. L. Rheingold, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2003, 125, 1160.
- [13] a) X. Ribas, D. A. Jackson, B. Donnadieu, J. Mahia, T. Parella, R. Xifra, B. Hedman, K. O. Hodgson, A. Llobet, T. D. P. Stack, Angew. Chem. 2002, 114, 3117; Angew. Chem. Int. Ed. 2002, 41, 2991; b) R. Xifra, X. Ribas, A. Llobet, A. Poater, M. Duran, M. Solà, T. D. P. Stack, J. Benet-Buchholz, B. Donnadieu, J. Mahía, T. Parella, Chem. Eur. J. 2005, 11, 5146; c) L. M. Huffman, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 9196; d) A. E. King, T. C. Brunold, S. S. Stahl, J. Am. Chem. Soc. 2009, 131, 5044; e) A. E. King, L. M. Huffman, A. Casitas, M. Costas, X. Ribas, S. S. Stahl, J. Am. Chem. Soc. 2010, 132, 12068; f) A. Casitas, A. E. King, T. Parella, M. Costas, S. S. Stahl, X. Ribas, Chem. Sci. 2010, 1, 326; g) X. Ribas, C. Calle, A. Poater, A. Casitas, L. Gómez, R. Xifra, T. Parella, J. Benet-Buchholz, A. Schweiger, G. Mitrikas, M. Solà, A. Llobet, T. D. P. Stack, J. Am. Chem. Soc. 2010, 132, 12299; h) R. Giri, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 15860.
- [14] G. H. Posner, D. J. Brunelle, L. Sinoway, Synthesis 1974, 662.
- [15] CuSCF₃ was purchased from TCI.
- [16] The formation of trifluoromethylthiolated arenes by the reaction of AgSCF3 with aryl boronic acids was also ruled out; see the Supporting Information.